US009323584B2

a2 United States Patent 10) Patent No.: US 9,323,584 B2
Pream et al. 45) Date of Patent: Apr. 26, 2016
(54) LOAD ADAPTIVE DATA RECOVERY 6,833,831 B2* 12/2004 Emberling GOGF 9/30079
PIPELINE : 345/506
6,839,830 B2* 1/2005 Liu .ccocovvvnncenenenn. GOG6F 9/3867
712/200
(71) Applicant: Seagate Technology LLC, Cupertino, 8,117,620 B2 2/2012 Raghunath et al.
CA (US) 8,156,502 Bl 4/2012 Blanding
8,347,194 B2 1/2013 No et al.
. 8,438,434 B2 5/2013 Engin
(72) Inventors: Jeffr.ey :I.ohn Pream, Berthoud, CO 8667377 Bl 32014 Mosahreh of al.
(US); Bijoy Purushothaman, 2001/0037443 AL* 112001 Lit .coooooovcrenen GOGF 9/3867
Longmont, CO (US); Venugopal Rao 712/200
Garuda, Longmont, CO (US); Ara 2001/0047501 Al 11/2001 Sindhushayana et al.
Patapoutian, Hopkinton, MA (US) 2008/0118229 Al 5/2008 Bliss
p s 0P g 2008/0126812 Al 52008 Ahmed et al.
. 2009/0328048 Al 12/2009 Khan et al.
(73) Assignee: SEAGATE TECHNOLOGY LLC, 2011/0141889 Al 6/2011 Pang et al.
Cupertino, CA (US) 2011/0231636 Al 9/2011 Olson et al.
2013/0007556 Al 1/2013 Pe_ltapoutian et al.
(*) Notice: Subject to any disclaimer, the term of this 2013/0290953 AL* 102013 Li oo GOGF 9/751%6/?
patent is extended or adjusted under 35
U.S.C. 154(b) by 294 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 14/020,624 EP 0479432 9/1991
(22) Filed: Sep. 6, 2013 OTHER PUBLICATIONS
. L. Guidotti et al. “Millimeter-Wave Main Memory-to-Processor Data
(65) Prior Publication Data Bus”, 2010 IEEE, pp. 1280-1287.*
US 2015/0074677 Al Mar. 12, 2015 (Continued)
(51) Int. CL Primary Examiner — Van Nguyen
GOGF 9/46 (2006.01) (74) Attorney, Agent, or Firm — Hollingsworth Davis, LL.C
GO6F 9/50 (2006.01)
(52) US.CL (57) ABSTRACT
CPC GO6F 9/5083 (2013.01); GO6F 9/5016 A load adaptive pipeline system includes a data recovery
(2013.01); GOG6F 2209/507 (2013.01); GOGF pipeline configured to transfer data between a memory and a
2209/5021 (2013.01) host. The pipeline includes a plurality of resources, one or
(58) Field of Classification Search more of the plurality of resources in the pipeline have mul-
None o) tiple resource components available for allocation. The sys-
See application file for complete search history. tem includes a pipeline controller configured to assess at least
. one parameter affecting data transfer through the pipeline.
(56) References Cited The pipeline controller is configure to allocate resource com-

U.S. PATENT DOCUMENTS

5,381,145 A 1/1995 Allen et al.
6,647,489 B1* 11/2003 Col GO6F 9/30058

712/226

ponents to the one or more resources in the pipeline in
response to assessment of the at least one data transfer param-
eter.

18 Claims, 8 Drawing Sheets

Data transfer identified by root job
Create sub-jobs

Determine target latency for each

sub-job

Estimate data transfer times for
each sub-job

Determine pipeline stage transfer
times

Determine total estimated |atency
for each sub-jol

Prioritize sub-jobs.
Allocate resource compoenents.

US 9,323,584 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Koutras et al. “Adaptive dynamic memory allocators by estimating
application workloads”, 2012 IEEE, pp. 252-259.*

Zhang et al. “Integrating Resource Consumption and Allocation for
Infrastructure Resources on-Demand”, 2010 IEEE, pp. 75-82.*
Mar. 13, 2015, File History for U.S. Appl. No. 14/020,630.

Jha et al., “Adaptive Resource Allocation for Embedded Parallel
Applications”, IEEE, Aug. 1996, pp. 425-431.

* cited by examiner

U.S. Patent Apr. 26,2016 Sheet 1 of 8 US 9,323,584 B2

100
28

110
(
/
PIPELINE
r—————- 1 r=———=—--—- 1 r—————- 1
| RESOURCE 1 : | RESOURCE 2 : IRESOURCE N|
: Resource : : Resource : : Resource :
| Component | | | Component | | I Component | |
| Rt | | Rt | | Ry | 140
(130 | | | | | | (
p | | | [| | 7
| | Resource || | | Resource || I | Resource | !
OUTPUT jJ | Component | I .| | Component | 1| N R | N
) R — Re. [— CI — 1 INPUT DEVICE
DEVICE AL Re it L Re | T
I . I [. I I . I
| | | |
N
I . ! | . ! I . !
: Resource : : Resource : : Resource :
I Component | | | Component | | | Component |
| Rix | | RoL | I Rim]
| | | | I | A~ 101
L e e = — | [| [|
; , ,
|]
120
(
J
A 4
LATENCY ANALYZER — RESOURCE MANAGER

Y

PIPELINE CONTROLLER

FIG. 1

U.S. Patent

Apr. 26,2016 Sheet 2 of 8

21
(0

Estimate latency

l (220

Reprioritize jobs

l 230
{

Allocate resource components

FIG. 2

US 9,323,584 B2

U.S. Patent Apr. 26,2016 Sheet 3 of 8 US 9,323,584 B2

»i

L 302
301 303 ~— T Latency /(
Flash Statgs Host
(307 Unit 308 (309 310 311
306 I (f (b 312
1lv 7 7]] (300
” 7 7 7 7 7 K
Media Read Stage Stage Decoder Output Host Data
Data xfer Buffer Data xfer Buffer Buffer xfer
h A A A '/__ 303
{304
\ 2 4 A 4 y
Resource Manager Pipe Stage Work Issue ’\+ 330
A A A A
Priority Sorted 340 A 4 \ 4 A 4 \ 4
List of Job IDs Read Buffer Output
. Stage Decode
Resource Allocation Buffer
317 ~P Control RAC RAC RAC
N A N
3772 Avall Resource (319 G0 301
Component Stack
317b—T Resource Comp
Power Control
3171 Cffline Resource
Component Stack
! 305
) {
Latency Analyzer
T 315
—P{ Latency Calculator Rootjob ID | jobID | priority | quality | positon| 1S D tXA | tXB | tBL
Priority fo Target Quality to Est. 1313
Counter/Timer 316~ _Latency LUT Latency LUT | 314
Prioity in | Lat out Qualin | Latout

FIG. 3

U.S. Patent Apr. 26,2016 Sheet 4 of 8 US 9,323,584 B2

410 ~ . . .
Operate pipeline having a plurality

of resources

420 -1 ,
Evaluate parameters affecting data

transfer through the pipeline

430 ~T o :
Prioritize jobs to complete jobs

within target latency

440 ~TAllocate resource components of at
least one of the plurality of
resources

FIG. 4

U.S. Patent Apr. 26,2016 Sheet 5 of 8 US 9,323,584 B2

Root Job
4 A 3
Sub- | Sub- | Sub- | Sub- | Sub- | Sub- | Sub- | Sub- Quality Priorit
job7 | job6 | job5 | job4 | job3 | job2 | job1 | job0 Hint y
\ 4 v
Estimated Data Transfer Time Target Latency
\ 4 v
Total Estimated Latency > Job prioritization
\ 4
Pipeline stage Resource Allocation
transfer times
Pipeline Pipeline Pipeline
stage 1 stage 2 stage 3
¥ v J
FIG. 5

Pipeline

U.S. Patent

Apr. 26,2016 Sheet 6 of 8

610

o)

Data transfer identified by root job

'

620 1

Create sub-jobs

I

630 -1

Determine target latency for each
sub-job

'

640

™ Estimate data transfer times for
each sub-job

I

650 1

[Determine pipeline stage transfer
times

'

660 1

"Determine total estimated latency
for each sub-job

'

670 -1

Prioritize sub-jobs

680 1

] '

Allocate resource components

US 9,323,584 B2

FIG. 6

U.S. Patent Apr. 26,2016 Sheet 7 of 8 US 9,323,584 B2

710
{
PIPELINE

r—-————=—= 1 r—-———=7 1 r—————= 1
JI_RESOURCE 1 : JI_RESOURCE 2 : :RESOURCE N:

ry_ -~~~ "~ [~~~/ —_—_———9~ 1

) : Resource : : Resource : : Resource : |

Iy | Component | | | Component | |) | Component | :

[Ri4 | | Ra1 |] Ri1 | 740
(730 |_|_ _____ _:___I ______ _:___|> ______ JI__| {
7 : Resource | 1 : Resource | 1 : Resource | !
OUTPUT n | Component | 1 nI | Component | | N R | N
DEVICE AL Re Lt R JLp| Re L) INPUTDEVICE

| L) | | L]]] L] |
| | | | |
N
| - I | L | | . |
: Resource : : Resource : : Resource :
j | Component | ;| Component | ;| Component |
| Rix | | Row | | Rim]
] ! I ! I !
L = 1 1 1

FIG. 7

U.S. Patent Apr. 26,2016 Sheet 8 of 8 US 9,323,584 B2
’/— 800
810
{
PIPELINE
r—————-— 1 [=—————-— 1 r—————-— 1
| RESOURCE 1 : | RESOURCE 2 : IRESOURCE N|
: : Resource : : : Resource : |[: Resource : :
I | Gomponent | | || [Component | | | | | Component | | |
| Ry || R [Ru- [
(130 I_:___l1___|_| : 21 | I_:___iw___|_| (140
J | | | | | | vd
| | Resource || | | Resource || I | Resource | !
OUTPUT I | Component | |1] | Component | | N R | .
CEVICE ALk Iﬁql Rez Iﬁxl e I:ﬁQ 1 INPUT DEVICE
| . | | . | | . |
I | | | I |
| * | | * | | * |
I . | I . | | L |
: Resource : : Resource : : Resource :
| Component | | Component | | | Component |
Rik | Rat | Ru-m |
: | : | : | a— 101
Ly] Ly — —— — —] L —]
; , ,
1]
820
(
J
Y
»| LATENCY ANALYZER —» RESOURCE MANAGER
PIPELINE CONTROLLER

FIG. 8

US 9,323,584 B2

1

LOAD ADAPTIVE DATA RECOVERY
PIPELINE

SUMMARY

Some embodiments involve a load adaptive pipeline sys-
tem that includes a data recovery pipeline configured to trans-
fer data between a memory and a host. The pipeline includes
a plurality of resources arranged in series, one or more of the
plurality of resources in the pipeline have multiple resource
components available for allocation. The system includes a
pipeline controller configured to assess at least one parameter
affecting data transfer through the pipeline. The pipeline con-
troller is configure to allocate resource components to the one
or more resources in the pipeline in response to assessment of
the at least one data transfer parameter.

In some embodiments, a system includes a data recovery
pipeline configured to execute data transfers including nor-
mal data transfers between a memory and a host and special
data transfers. The pipeline comprises a plurality of resources
arranged in series between the memory and host. One or more
of the plurality of resources in the pipeline have multiple
resource components available for allocation. The system
includes a pipeline controller configured to assess at least one
parameter affecting data transfer through the pipeline. The
pipeline controller is configured to allocate available resource
components to the one or more resources in the pipeline in
response to assessment of the data transfer parameter.

Some embodiments are directed to a method of operating a
load adaptive pipeline system. The method includes a data
communications pipeline that transfers data between a
memory and a host. The pipeline includes a plurality of
resources coupled in series between a host and a memory.
One or more of the resources include multiple resource com-
ponents available for allocation. At least one parameter
affecting data transfer through the pipeline is assessed. One or
more resource components of at least one of the plurality of
resources in the pipeline are enabled or disabled in response
to assessment of the data transfer parameter.

These and other features and aspects of various embodi-
ments may be understood in view of the following detailed
discussion and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a load adaptive data commu-
nications pipeline system configured to transfer data between
an output device and an input device in accordance with some
embodiments;

FIG. 2 is a flow diagram illustrating a method of operating
a load adaptive pipeline system in accordance with some
embodiments;

FIG. 3 is a block diagram of a load adaptive data commu-
nications pipeline system disposed between a memory and a
host processor in accordance with some embodiments;

FIG. 4 is a flow diagram of a method of operating a load
adaptive pipeline system in accordance some embodiments;

FIGS. 5 and 6 illustrate processes that can be implemented
by the system of FIG. 3;

FIG. 7 is a block diagram of a flexible pipeline system that
can be used for two types of data transfers between memory
and a host, the two types of data transfers including normal
data transfers and special data transfers; and

FIG. 8is ablock diagram of a load adaptive pipeline system
that can be configured to implement normal data transfers and
special data transfers between a memory and host.

The same reference numbers may be used to identify like
components in multiple figures.

15

20

25

30

35

40

45

50

55

65

2
DETAILED DESCRIPTION

In the following description of various example embodi-
ments, reference is made to the accompanying drawings that
form a part hereof, and in which is shown by way of illustra-
tion various example embodiments. It is to be understood that
other embodiments may be utilized, as structural and opera-
tional changes may be made without departing from the scope
of'the claims appended hereto.

Aload adaptive pipeline system can be designed to allocate
pipeline resources according to an estimated latency through
the pipeline and a target latency. The allocation of pipeline
resource components may be performed on the fly to enhance
data transfer performance while reducing power consump-
tion. The operation of the load adaptive pipeline is controlled
by a pipeline controller that uses quality of data information,
data transfer rates of the pipeline, and priority information to
allocate pipeline resource components. Non-allocated
resource components maybe be deactivated or placed into a
reduced power mode to save power.

FIG. 1 is a block diagram of a system 100 that includes a
load adaptive pipeline 101 comprising a data transfer pipeline
110 and a load adaptive pipeline controller 120, The pipeline
110 is disposed between an output device 130 and an input
device 140 to facilitate data transfers therebetween.
Approaches of the load adaptive pipeline are described in
terms of a load adaptive data recovery pipeline disposed
between an output device (a memory device from which data
is read) and an input device (a host system that requests the
data). The memory device may include, for example, a mag-
netic medium, a hybrid memory comprising a magnetic
medium and a non-volatile solid state memory such as flash,
or a solid state drive, e.g., a flash drive, or other types of
memory.

The approaches described herein are also applicable to
other pipeline arrangements. For example, the load adaptive
pipeline may be arranged to transfer data from a host system
to a memory device. In this case, the host would be the input
device and the memory device would be the output device. In
some configurations, the load adaptive pipeline system 100
may be part of a memory controller.

The pipeline 110 includes a number of stages, each stage
associated with a particular pipeline resource. The pipeline
resources are shown in FIG. 1 as resources 1, 2, . . . N. In this
example, pipeline resources 1, 2, . . . N are coupled in series
to transfer the data through the pipeline from the output
device 130 to the input device 140. The resources 1,2, ... N
can include data input buffers, data output butfers, decoders,
encoders, for example.

One or more of the resources of the pipeline, e.g., resources
1,2, ... Ninclude a number of resource components that are
arranged to operate in parallel. As depicted in the block dia-
gram of FIG. 1, resource 1 comprises resource components
R, ;,R, ... R, g resource component 2 comprises resource
components R, ;, R,, . .., R, ;, resource component 3
comprises resource components Ry ;, R;, ... Ry, Inan
embodiment, resource 1 is an input buffer resource compris-
ing K input buffers, resource component 2 is a decoder
resource comprising L. decoders, and resource N=3 is a output
buffer resource comprising M output buffers.

The pipeline controller is configured to allocate the
resource components using quality of data information, data
transfer rates of the pipeline, and priority information. One or
more of the resource components may be active for each

US 9,323,584 B2

3

resource 1,2, ... Ninthe pipeline depending on the allocation
by the pipeline controller. The pipeline controller may enable
or disable resource components of each resource to achieve a
specified data transfer rate. Disabled resource components
can be deactivated or placed into a reduced power mode to
conserve power.

As depicted in FIG. 1, the pipeline controller includes a
latency analyzer and resource manager. The latency analyzer
is configured to determine a total estimated latency from an
estimated data transfer time for the data and a current data
transfer time of the pipeline or pipeline stages. The estimated
data transfer time of the data may be based on data quality
factors (such as decode time, bit error rate, code rate, and
storage device health, etc.) and also the pending workload at
each pipeline stage, for example. The data transfer time of
each stage of the pipeline is the time it takes data to transfer
through that stage. The total data transfer time of the pipeline
is the total of the data transfer times of each pipeline stage.

The resource manager can include a resource allocation
controller for each resource in the pipeline. The resource
allocation controllers are configured to allocate resource
components to achieve a specified data rate based on the total
estimated latency. The resource manager may activate or
deactivate, enable or disable resource components for one or
more resource types. In some implementations, resource
components may be placed in various levels of power state,
e.g., ready state, light sleep state, deep sleep state, and shut
down state. The power state of the resources is based on the
current loading of the pipeline resource and the backlog of
jobs to be performed by the pipeline. The resource manager
maintains a priority sorted list of jobs to be performed by each
of'the pipeline resources and issues commands to the pipeline
stages to perform the jobs.

FIG. 2 is a flow diagram of a process that may be imple-
mented by aload adaptive pipeline system such as the system
of FIG. 1. FIG. 2 illustrates a method of implementing a
pipeline controller to control resource components of the load
adaptive pipeline. The pipeline controller estimates 210 the
latency of jobs through the pipeline based on the pipeline
stage transfer times and the estimated data transfer time based
on the data quality factors. The jobs waiting to traverse the
pipeline stages are prioritized 220 based on the latency esti-
mates. Resource components are allocated 230 to meet target
latencies of the prioritized jobs.

FIG. 3 is a block diagram of a load adaptive pipeline
including data transfer pipeline 300 and load adaptive pipe-
line controller including latency status unit 303, resource
manager 304 and latency analyzer 305. The load adaptive
pipeline is arranged to transfer data from a flash memory 301
to a host system 302.

Data transfer pipeline 303 includes data transfer compo-
nents including a media data transfer component 306 and
stage data transfer component 308. The media data transfer
component 306 is configured to transfer a sub-job, whichis a
code word or a subset of code words of the data of a data
transfer operation, from the flash to the read buffer resource
307. The stage data transfer component 308 is configured to
transfer a sub-job between the read bufter resource 307 and
the stage buffer resource 309 that buffers the sub job into a
decoder resource 310. The host data transfer component 312
is configured to transfer the sub job from the output buffer
resource 311 of the decoder 310 to the host 302. The pipeline
includes resources 307, 309, 310, 311. Each of the pipeline
resources may include one or more resource components that
can be allocated by the pipeline manager. For example, the
read buffer resource 307 may include multiple read buffers;
the stage buffer resource 309 may include multiple stage

20

30

40

45

50

55

4

buffers, the decoder resource 310 may include multiple
decoders, e.g., low density parity check (LDPC) decoders;
and the output buffer resource 311 may include multiple
output buffers. Two or more resource components of each
resource 307, 309, 310, 311 may be arranged to operate in
parallel to increase the data transfer rate through the pipeline.

The pipeline 303 includes multiple memory stages and a
multi-decoder stage. Each memory stage is made up from
multiple cuts of memory that can be independently controlled
for buffer operations and power management. The decoder
stage is made up from multiple decoders that can be indepen-
dently controlled for decode operations and power manage-
ment.

In this example, the data transferred in response to a single
host command is referred to as a root job and involves a flash
read and data recovery operation. The root job may include
multiple code words, and a sub job is created for each code
word or subset of code words. The system can request a large
payload (root job) that is split into multiple pieces (sub-jobs)
to be performed in parallel or serially depending on the
resources allocated to the sub-jobs.

The root job includes a quality hint that is shared amount
the sub-jobs. The quality hint may be based on a number of
parameters such as decode time, bit error rate, code rate, and
flash health, etc. and provides an indication of how much time
it will take to decode the sub-job. Each root job is associated
with a priority. The latency analyzer 305 stores a list of jobs
currently in the system and the information 313 associated
with each job. The information stored and used by the latency
analyzer may include the job identification (Root Job ID), and
sub job identification (job ID), the priority (priority), quality
hint (quality), position in the job queue (position), time stamp
(IS), estimated time to decode and get data ready to transfer to
host (ID), time to transfer data to stage buffer (txA), time
before data can be transferred to the host (txB), and backlog
(tBL), which is the total estimated latency from this job and
all jobs ahead of it.

The information for each job allows the latency analyzer to
track parameters such as each job’s position within the work-
flow of the system, the length of time the job is expected to
take to get through the system, the backlog of jobs within the
system that are ahead of a job, and other factors.

The latency analyzer 305 uses the quality hint to obtain an
estimated decode operation time. In some implementations,
the latency analyzer 305 uses the quality hint to look up the
estimated decode operation time from a programmable look
up table 314. The pipeline controller includes a latency status
unit 303 configured to assess the pipeline stage transfer times
and to determine the sum of the pipeline stage transfer times.
The information from the latency status unit is passed to the
latency calculator 315 which uses the sum of the pipeline
stage transfer times and the estimated decode operation time
from the look up table 314 to determine the total estimated
latency for the sub-job to complete the decode and transfer
processes.

The root job command also includes a priority value for the
root job. The priority value is used by the latency analyzer 305
to determine a target latency for the root-job and associated
sub-jobs. In some implementations, the latency analyzer 315
uses the priority from the host command to a look up a target
latency value from a programmable look up table 316. The
target latency is the specified or desired amount of time for
completion of the decode and transfer process to the host for
the sub-job. The total estimated latency and the target latency
are used by the resource manager 304 to determine an optimal
resource utilization for the load adaptive pipeline.

US 9,323,584 B2

5

Sub jobs are prioritized based on their target latency and
may be re-prioritized as the sub jobs in the queue complete, as
new sub jobs come into the job-queue, and/or if there is risk
that a sub job will not meet its target latency. For example, if
a sub job is at risk for not meeting its target latency, one or
more of the sub jobs in the queue of sub jobs can be re-
prioritized based on which sub job has the highest risk of
missing its target latency. The evaluation and prioritization
process operates within the resource manager 304. If one or
more sub jobs are identified that are at risk of missing their
latency requirements, then these jobs would get pushed ahead
of other sub jobs that have less risk of missing their latency
requirement.

The evaluation task is a loop that continually loops through
the list of sub jobs updating the latency estimates based on a
sub-job’s position in the list, the backlog of sub-jobs ahead of
the job, and statistics collected from the decoder. The job
positions are updated in the job list 313 by the latency ana-
lyzer as work issues to various stages and transfer engines in
the pipeline through the pipe stage work issue unit 330. As
jobs complete a stage in the pipeline, the latency for the
completed stage is removed from the backlog.

Decoder statistics such as iteration count and/or bit error
count for a job can be fed back into the root job’s quality hint
to adjust the quality hint closer to the reality of the data
quality. The quality feedback may be weighted based on the
number of jobs in a root job and how may statistic samples
have been accumulated. Latencies may be adjusted based on
a code word’s physical position within the root job’s data set.

The reprioritize function is performed by the latency ana-
lyzer and takes recently updated latency numbers and orders
them such that the jobs with the highest risk of exceeding the
target latency are prioritized over those more likely to com-
plete within the target latency. The priority sorted list of jobs
is maintained by the resource manager 304. The resource
allocation function looks at the prioritized list 340 and adjusts
the number of active resource components for each resource
to optimally complete all jobs within their target latency.

Each resource 307, 309, 310, 311 of the pipeline is con-
trolled by a resource allocation controller (RAC) 317, 319,
320, 321. The resource allocation controllers 317, 319, 320,
321 include an available resource component stack, used to
track available resource components, and an offline resource
stack, used to track resource components that are offline. In
FIG. 3, the read buffer RAC available resource component
stack 317a, offline resource component stack 317b, and
resource power control 317¢ are shown. Each of the stage
RAC, decode RAC, and output bufter RAC also include an
available resource component stack, offline resource compo-
nent stack, and resource component power control which are
not shown in FIG. 3.

The available resource components identified in the avail-
able resource component stack 317a are not presently active
in the pipeline and can become active in a relatively short
amount oftime. The offline resource components identified in
the offline resource component stack 317¢ are not active and
take a longer amount of time to become active than the avail-
able resource components. The resource component power
control 3175 modifies or maintains the power status of each of
the resource components as active, available, or offline, for
example. The resource component power control is config-
ured to track active and inactive components and to transition
the resource components through various power configura-
tions at the recommendation of the resource manager.

The pipeline resource manager is a collection point for
resource statistics and controls the resource components for
each resource 307, 309, 310, 311 through RACs 317, 319,

10

15

20

25

30

35

40

45

50

55

60

65

6

320, 321. The resource manager can be implemented as a
level of abstraction from the latency analyzer. The resource
manager determines which resource components are needed
by the pipeline to handle its current workload.

The resource allocation will reduce the number of resource
components used until a target latency is exceeded, then adds
resource components back to the resource until all target
latencies are meet. By looping through these tasks and func-
tions, the number of resource components used for each
resource of the load adaptive pipeline is updated to keep the
pipeline running with optimal efficiency and power level.

Processes involved in implementing a load adaptive pipe-
line system in accordance with some embodiments are illus-
trated by the flow diagram of FIG. 4. For example, the load
adaptive pipeline system depicted in FIG. 3 can be arranged to
implement the processes of FIG. 4. The pipeline includes a
plurality of resources that are operated 410 in series. One or
more of the resources have multiple resource components that
are available to be activated or deactivated. When a resource
component is activated, it operates in parallel with other
resource components of the resource, thereby increasing the
throughput of the pipeline for that stage.

The pipeline resource components can be activated or
deactivated based at least in part on an evaluation 420 of
parameters that affect data transfer through the pipeline. The
parameters evaluated may include an estimated data transfer
time and pipeline stage transfer time. The estimated data
transfer time may be based on various factors including
decode time, bit error rate, code rate, and storage device
conditions. For non-volatile memory such as floating gate
(flash) memory, the storage device conditions can include,
number of program/erase cycles experienced by the flash
memory, the retention time of the data and/or environmental
conditions such as temperature, humidity and/or other fac-
tors. The estimated data transfer time is determined at least in
part using a quality hint associated with the job to be trans-
ferred through the pipeline.

The pipeline stage transfer time is the current transfer time
for jobs that are traversing through the pipeline. Pipeline stage
transfer time is the sum of the transfer times for each stage in
the pipeline ahead of the current job. The pipeline stage
transfer time is the amount of time it will take to get a sub job
through the system. To predict the amount of time it will take
to get a sub job through the system, both where the sub job is
in the system and the backlog that is ahead of it need to be
taken into account. The estimated data transfer time and the
pipeline stage transfer time are used to determine the total
estimated latency for a job. The pipeline stage transfer time is
sum of time between the current sub-job’s position in the
pipeline and the output of the pipeline to the input device.

The sub jobs to be transferred through the pipeline are
prioritized 430 based on the estimated data transfer time, the
pipeline stage transfer time, and the target latency associated
with the job. Resource components of at least one of the
resources in the pipeline are allocated 440 based on the total
estimated latency and the target latency.

The processes involved in implementing a load adaptive
pipeline as illustrated in FIG. 3 may be further understood in
view of the process flow diagrams of FIGS. 5 and 6. Data to be
transferred through the pipeline are identified 610 by a root
job. The rootjob is associated with a quality hint and a priority
for the root job. The pipeline controller organizes 620 the root
job by creating a number of sub-jobs, e.g., sub jobs 0-7 as
illustrated in FIG. 5.

The pipeline controller determines 630 a target latency for
each sub-job. For example, the target latency can be deter-
mined based on the priority value passed to the memory

US 9,323,584 B2

7

controller by the host. In some implementations, the pipeline
controller looks up the target latency from a look up table
using the priority value.

The data transfer time for each sub job is estimated 640.
The estimated data transfer time for each sub job may be
determined by using the quality hint of the root job to form an
index for an estimated data transfer time look up table (LUT).

The pipeline stage transfer time for the each sub job is
determined 650 by summing the transfer times of each pipe-
line stage. Using the estimated data transfer time and the
pipeline stage transfer time, the total estimated latency of
each sub job is determined 660.

The sub jobs being transferred through the pipeline are
prioritized 670 based on the total estimated latencies and
target latencies for the sub-jobs. Sub jobs are transferred
through the pipeline in the order of the prioritized list.
Resource components are allocated 680 to achieve the target
latency for each sub-job.

The pipeline controller continually evaluates the pipeline
stage transfer times to account for changing conditions of the
pipeline, incoming workload, and backlog. As sub-jobs com-
pleted they are removed from the backlog. As new root jobs
enter the pipeline system, they add to the backlog.

Based on the pipeline transfer times, the pipeline controller
updates the total estimated latency for each sub job in the
prioritized list. The sub jobs in the prioritized list are repri-
oritized and the resource component allocations are updated.

In some embodiments, a pipeline may support both normal
data transfer jobs as well as alternative data processes that
may or may not be related to the normal data stream. For
example, the alternative data processes involve “out of band
operations” that can involve processes such as checking the
health of the memory by reading specific memory areas and/
or performing other data operations are not part of the data
stream to the host. FIG. 7 illustrates a pipeline data commu-
nications channel 710 disposed between an output device
730, e.g. a data storage device, and an input device 740. The
pipeline 710 illustrated in FIG. 7 uses non-fixed, flexible
groups of resource components for one or more pipeline
stages. Using a flexible pipeline channel, resource compo-
nents can be allocated for special data transfer jobs without
stopping normal data transfer operations.

As illustrated in FIG. 7, a flexible pipeline 710 may be
implemented by allocating, for special data transfer jobs, one
or more resource components for one or more of the pipeline
resources (Resources 1, 2, . . . N). Because the remaining
resource components are allocated for any normal data trans-
fer operation, the performance of the pipeline for normal data
transfers is minimally affected by the special data transfers.

In the example illustrated by FIG. 7, the special data trans-
fer jobs are transferred through the pipeline 710 using
resource components R, ;, R, ;, R;; and the normal data
transfer jobs are transferred through the pipeline using
resource components R, , ... R, o R, ... R,;,R;, ...
R;_,, In this implementation, resource components R, ;,
R, ;, R, , used for the special data transfer operations are
removed from the pool of available resource components
used for normal data transfer operations until the special data
transfer operations are completed. After completion of the
special data transfer operations, the resource components
R, ;, R, ;. R; | are returned to the pool of resource compo-
nents available for normal data transfer operations. In some
configurations, one or more resource components of a single
resource, or less than all resources may be allocated for the
special data transfer jobs. For example, in some implementa-
tions, one or more decoder components of a decoder resource
may be allocated for the special data transfer jobs and the

10

15

20

25

30

35

40

45

50

55

60

65

8

resource components of other resources, e.g., input and out-
put bufter resources are shared between the normal data trans-
fer jobs and the special data transfer jobs.

In some embodiments, the special data transfers may be
implemented using the same pool of resource components as
normal data transfers, but the special data transfers are issued
as lower priority jobs than normal data transfers. In these
embodiments, the special data transfers only used the
resources, e.g. input buffer resource, stage buffer resource,
decoder resource, output buffer resource, when the normal
data transfers do not need to use these resources. Thus, a
single resource (or multiple resources) is not consumed by the
special transfer operations and the performance for normal
data transfer operations is minimally affected by the special
data transfer operations.

In some embodiments, a load adaptive pipeline may be
used for both normal data transfer operations and special data
transfer operations. A load adaptive pipeline system 800 con-
figured to handle both normal and special data transfers is
illustrated in FIG. 8. As previously discussed, a load adaptive
pipeline system, as illustrated in FIG. 8, can be designed to
allocate pipeline resources according to an estimated latency
through the pipeline and a target latency for both the normal
data transfer and the special data transfers. The allocation of
pipeline resource components to normal and special data
transfer jobs may be performed on the fly to enhance data
transfer performance while reducing power consumption. As
previously discussed, the pipeline 810 is controlled by a load
adaptive pipeline controller 820 that uses quality of data
information, data transfer rates of the pipeline, and priority
information to allocate pipeline resource components.
Unused resource components maybe be deactivated or placed
into a reduced power mode to save power.

FIG. 8 is a block diagram of a system 800 that includes a
load adaptive pipeline 801 comprising a data transfer pipeline
810 and a load adaptive pipeline controller 820, The pipeline
810 is disposed between an output device 830 and an input
device 840 to facilitate both normal data transtfers and special
data transfers therebetween. The pipeline 810 includes a
number of stages, each stage associated with a particular
pipeline resource, shown in FIG. 8 asresources 1,2, ... N. In
this example, pipeline resources 1, 2, . . . N are coupled in
series to transfer the data through the pipeline from the output
device 830 to the input device 840. The resources 1,2, ... N
can include data input buffers, data output butfers, decoders,
encoders, for example.

One or more of the resources of the pipeline, e.g., resources
1,2,...Nincludes a number of resource components that are
arranged to operate in parallel. As depicted in the block dia-
gram of FIG. 8, resource 1 comprises resource components
R, 1,R; ... R s resource component 2 comprises resource
components R, ;, R, ... R, ;, resource component 3 com-
prises resource componentsR;_|,R; ,...R;_,,. Inanembodi-
ment, resource 1 is an input buffer resource comprising K
input buffers, resource component 2 is a decoder resource
comprising L. decoders, and resource N=3 is a output buffer
resource comprising M output buffers.

The pipeline controller 820 is configured to allocate the
resource components for the normal and special data transfers
using quality of data information, data transfer rates of the
pipeline, and priority information. One or more of the
resource components may be active for each resource 1,
2, ... N in the pipeline, depending on the allocation by the
pipeline controller. The pipeline controller may enable or
disable resource components of each resource to achieve a
specified

US 9,323,584 B2

9

data transfer rate. Disabled resource components can be deac-
tivated or placed into a reduced power mode to conserve
power.

As depicted in FIG. 8, the pipeline controller 820 includes
a latency analyzer and resource manager. The latency ana-
lyzer is configured to determine a total estimated latency from
an estimated data transfer time for the data and a current data
transfer time of the pipeline or pipeline stages. The estimated
data transfer time of the data may be based on data quality
factors (such as decode time, bit error rate, code rate, and
storage device health, etc.) and also the pending workload at
each pipeline stage, for example. The data transfer time of
each stage of the pipeline is the time it takes data to transfer
through that stage. The total data transfer time of the pipeline
is the total of the data transfer times of each pipeline stage.

The resource manager can include a resource allocation
controller for each resource in the pipeline. The resource
allocation controllers are configured to allocate resource
components to achieve a specified data rate based on the total
estimated latency. The resource manager may activate or
deactivate, enable or disable resource components for one or
more resource types. In some implementations, resource
components may be placed in various levels of power state,
e.g., ready state, light sleep state, deep sleep state, and shut
down state. The power state of the resources is based on the
current loading of the pipeline resource and the backlog of
jobs to be performed by the pipeline. The resource manager
maintains a priority sorted list of jobs to be performed by each
of'the pipeline resources and issues commands to the pipeline
stages to perform the jobs.

In some mixed implementations some resource compo-
nents may be assigned to the special data transfers and other
resource components may be adaptively allocated between
special and normal data transfers. In FIG. 8, resource com-
ponents R1-1 and RN-1 are assigned to the special data trans-
fers and resources components R1-2 ... R1-K,R2-1...R2-L,
R3-3 ... R3-M are assigned to normal data transfers. In this
scenario, the load adaptive pipeline controller allocates
resource components of Resource 2, e.g., a decoder, for both
special and normal data transfers.

Embodiments disclosed herein relate to a data recovery
pipeline configured to transfer data between a memory and a
host processor. The memory may include for example, a
magnetic storage medium, a solid state non-volatile memory,
or a hybrid memory comprising a two types of memory, e.g.,
a magnetic storage medium and a non-volatile solid state
memory.

The pipeline includes a plurality of resources that are used
to carry on the data recovery operations of the pipeline. For
example, in various pipeline configurations, the resources
may comprise an input buffer resource, a decoder resource, a
encoder resource, an output buffer resource and/or other
resources that are used in the data recovery process. One or
more of the plurality of resources in the pipeline has multiple
resource components available for allocation. For example,
an input buffer resource can include multiple input buffers
available for allocation; a decoder resource can have multiple
decoders available for allocation; an output buffer resource
can have multiple output buffers available for allocation. The
resource components allocated to each of the one or more
resources can be arranged to operate in parallel so that when
multiple resources components of the same type are activated,
they operate together to increase the throughput of the pipe-
line.

A resource component can be allocated, meaning that it is
activated or a resources component can be non-allocated.
Non-allocated resource components operate in a reduced

10

15

20

25

30

35

40

45

50

55

60

65

10

power mode to conserve energy. For example, non-allocated
resource components can be placed into light sleep, deep
sleep, or can be deactivated (shut down).

A pipeline controller is configured to assess at least one
parameter affecting data transfer through the pipeline and
allocate the resource components to the one or more
resources in the pipeline in response to assessment of the at
least one data transfer parameter. The at least one parameter
affecting data transfer may include one or more of quality of
data, decode time, bit error rate, code rate, memory age, and
pending workload.

The data is transferred to the pipeline via a root job that
includes multiple code words. The pipeline controller creates
a number of sub job for the root job, each sub job includes a
subset of one or more code words of data of the root job. The
root job also passes a quality hint and priority associated with
the data to the pipeline controller. The pipeline controller is
configured to use the quality hint to determine an estimated
data transfer time for each sub-job. For example, the pipeline
controller may use a programmable look up table to deter-
mine the estimated data transfer time for each sub job based
on the quality hint. The pipeline controller is configured to
determine a pipeline stage transfer time for each pipeline
stage and to determine a total estimated latency for the sub job
based on the estimated data transfer time and a sum of the
pipeline stage transfer times.

The root job passes a priority to the pipeline manager
which is used to determine a target latency for each sub-job.
The pipeline controller can include a target latency deter-
mined by using the priority to look up the target latency in a
programmable look-up table. The pipeline controller can be
configured to allocate resource components based on a total
estimated latency and a target latency of each sub-job.

In some implementations, the pipeline controller is config-
ured to allocate the resource components by enabling or dis-
abling the resource components on the fly.

Some embodiments relate to a method of operating a
memory controller. The method includes operating a data
communications pipeline that transfers data between a
memory and a host processor. The pipeline comprises a plu-
rality of resources coupled in series between a host processor
interface and a memory interface. At least one parameter
affecting data transfer through the pipeline is assessed. Pipe-
line resource components for at least one of the plurality of
resources in the pipeline are allocated in response to assess-
ment of the data transter parameter. The plurality of resources
can include a decoder resource, an encoder resource, an input
buffer resource, an output buffer resource, for example.
Assessing the at least one data transfer parameter can involve
estimating data transfer latency through the pipeline. For
example, assessing the at least one data transfer parameter
can involve assessing a pipeline stage data transfer rate for
each pipeline stage. Allocating the resource components can
be accomplished by activating or deactivating one or more of
the resource components.

Data is transferred into the pipeline as a root job and a sub
job is created for each subset of one or more code words in the
data of the root job. In some implementations, a quality hint
and a priority are associated with each root job. The quality
hint and priority apply to the sub jobs of the root job. The
estimated data transfer time is determined based on the qual-
ity hint. e.g., by looking up the estimated data transfer time in
a look up table. The target latency for the root job is deter-
mined from the priority value, e.g., by looking up the target
latency in a look up table.

The pipeline state transfer time is determined at each stage
of the pipeline. A total estimated latency for the sub job is

US 9,323,584 B2

11

based on the estimated data transfer time and the pipeline
stage transfer times. The available resource components are
allocated based on the total estimated latency and the target
latency.

In some embodiments, all or part of the load adaptive
pipeline system may be implemented in hardware. In some
embodiments, the pipeline and/or pipeline manager may be
implemented in firmware, software running on a microcon-
troller or other device, or any combination of hardware, soft-
ware and firmware. The techniques described in this disclo-
sure may be implemented, at least in part, in hardware,
software, firmware or any combination thereof. For example,
various aspects of the described techniques may be imple-
mented within one or more controllers, one or more proces-
sors, including one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), or any
other equivalent integrated or discrete logic circuitry, as well
as any combinations of such components. The term “control-
ler,” “processor,” or “processing circuitry” may generally
refer to any of the foregoing logic circuitry, alone or in com-
bination with other logic circuitry, or any other equivalent
circuitry. A control unit comprising hardware may also per-
form one or more of the techniques of this disclosure.

Such hardware, software, and firmware may be imple-
mented within the same device or within separate devices to
support the various operations and functions described in this
disclosure. In addition, any of the described units, modules or
components may be implemented together or separately as
discrete but interoperable logic devices. Depiction of differ-
ent features as modules or units is intended to highlight dif-
ferent functional aspects and does not necessarily imply that
such modules or units must be realized by separate hardware
or software components. Rather, functionality associated
with one or more modules or units may be performed by
separate hardware or software components, or integrated
within common or separate hardware or software compo-
nents.

The techniques described in this disclosure may also be
embodied or encoded in a non-transitory computer-readable
medium, such as a computer-readable storage medium, con-
taining instructions. Instructions embedded or encoded in a
computer-readable medium may cause a programmable pro-
cessor, or other processor, to perform the method, e.g., when
the instructions are executed. Computer readable storage
media may include random access memory (RAM), read only
memory (ROM), programmable read only memory (PROM),
erasable programmable read only memory (EPROM), elec-
tronically erasable programmable read only memory (EE-
PROM), flash memory, a hard disk, a CD-ROM, a floppy disk,
a cassette, magnetic media, optical media, or other computer
readable media.

The foregoing description of the example embodiments
has been presented for the purposes of illustration and
description. It is not intended to be exhaustive or to limit the
inventive concepts to the precise form disclosed. Many modi-
fications and variations are possible in light of the above
teaching. Any or all features of the disclosed embodiments
can be applied individually or in any combination are not
meant to be limiting, but purely illustrative. It is intended that
the scope be limited not with this detailed description, but
rather determined by the claims appended hereto.

What is claimed is:

1. A system comprising:

a memory;

a data recovery pipeline configured to transfer data

between the memory and a host processor, the data asso-

w

10

15

20

25

30

35

40

45

50

55

60

12

ciated with aroot job, the pipeline comprising a plurality
of resources, one or more of the plurality of resources in
the pipeline having multiple resource components avail-
able for allocation; and
a pipeline controller configured to:
create a sub-job for each subset of one or more code
words in the data associated with the root job;

estimate a data transfer time for each sub-job;

determine a pipeline stage transfer time for each pipeline
stage;

determine a total estimated latency for the sub-job based
on the estimated data transfer time and a sum of the
pipeline stage transfer times;

assess at least one parameter affecting data transfer
through the pipeline; and

allocate resource components to the one or more
resources in the pipeline in response to assessment of
the at least one data transfer parameter and the total
estimated latency for the sub-job.

2. The system of claim 1, wherein the at least one parameter
comprises one or more of quality of data, decode time, bit
error rate, code rate, memory age, and pending workload.

3. The system of claim 1, wherein the pipeline controller is
configured to cause non-allocated resource components to
operate in a reduced power mode.

4. The system of claim 1, wherein:

a quality hint is associated with each root job; and

the pipeline controller is configured to use the quality hint
to estimate the data transfer time for each sub-job.

5. The system of claim 4, wherein:

the pipeline controller comprises a look up table of esti-
mated data transfer times; and

the pipeline controller is configured to use the quality hint
to look up an estimated data transfer time for each sub
job from the look up table.

6. The system of claim 1, wherein:

a priority value is associated with each root job; and

the pipeline controller is configured to use the priority
value to determine a target latency for the sub job.

7. The system of claim 1, wherein:

the pipeline controller includes a look up table of target
latencies for each root job; and

the pipeline controller is configured to look up a target
latency value for the sub job from the look up table using
the priority value.

8. The system of claim 1, wherein the pipeline controller is
configured to allocate resource components based on a target
latency of each sub-job.

9. The system of claim 1, wherein the pipeline controller is
configured to allocate the resource components by enabling
or disabling the resource components on the fly.

10. A system comprising:

a memory;

a data recovery pipeline configured to execute data trans-
fers between the memory and a host processor, the data
associated with a root job, the data transfers including
normal data transfers between a memory and a host
processor and special data transfers, the pipeline com-
prising a plurality of resources arranged in series, one or
more of the plurality of resources in the pipeline having
multiple resource components available for allocation;
and

a pipeline controller configured to:
create a sub-job for each subset of one or more code

words in the data associated with the root job;
estimate a data transfer time for each sub-job;

US 9,323,584 B2

13

determine a pipeline stage transfer time for each pipeline
stage;

determine a total estimated latency for the sub-job based
on the estimated data transfer time and a sum of the
pipeline stage transfer times;

assess at least one parameter affecting data transfer
through the pipeline; and

allocate resource components to the one or more
resources in the pipeline in response to assessment of
the data transfer parameter and the total estimated
latency for the sub-job.

11. The system of claim 10, wherein the pipeline controller
is configured to allocate a first set of the resource components
to implement the normal data transfers and to allocate a
second set of the resource components to implement the
special data transfers.

12. The system of claim 10, wherein the pipeline controller
is configured to allocate the resource components in the first
set by enabling or disabling the resource components in the
first set based on a total estimated latency and a target latency
of the normal data transfers.

13. The system of claim 10, wherein the pipeline controller
is configured to allocate the resource components in the sec-
ond set by enabling or disabling the resource components in
the second set based on a total estimated latency and a target
latency of the special data transfers.

14. The system of claim 10, wherein:

the pipeline controller is configured to allocate the resource

components based at least in part on data transfer prior-
ity; and

the special data transfers are assigned a lower priority than

the normal data transfers.

15. A method performed by a processor for operating a
memory controller, comprising:

operating a data communications pipeline that transfers

data between a memory and a host processor, the pipe-

20

30

35

14

line comprising a plurality of resources coupled in series
between a host processor interface and a memory inter-
face, one or more of the resources having multiple
resource components available for allocation;
transferring data into the pipeline using a root job;
creating a sub-job for each subset of one or more code
words in the data associated with the root job;
estimating a data transfer time for each sub-job;
determining a pipeline stage transfer time for each pipeline
stage;
determining a total estimated latency for the sub-job based
on the estimated data transfer time and a sum of the
pipeline stage transfer times;

assessing at least one parameter affecting data transfer

through the pipeline; and

allocating resource components used for the one or more

resources in response to assessment of the data transfer
parameter and the total estimated latency.

16. The method of claim 15, wherein the root job is asso-
ciated with a quality hint and a priority and operating the
pipeline comprises:

determining an estimated data transfer time based on the

quality hint;

determining a target latency based on the priority.

17. The method of claim 16, further comprising allocating
the available resource components based on the target
latency.

18. The method of claim 15, wherein:

the data transfers include normal data transfers between a

memory and a host processor and special data transfers;
and

allocating the resource components comprises at least one

of allocating a first set of the resource components to the
normal data transfers and allocating a second set of the
resource components to the special data transfers.

#* #* #* #* #*

